## New Limits from Old

Homework Assignment
Use correct limit notation and words, where appropriate, to express your answers to the following problems.

1. Let $f$ and $g$ be the functions whose graphs are shown below. Use the graphs to evaluate the following limits. If a limit doesn't exist, explain why.

a. $\lim _{x \rightarrow-3^{-}} \frac{f(x)}{g(x)}$
c. $\lim _{x \rightarrow 1} \frac{f(x)}{g(x)}$
b. $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}$
2. Let $f$ and $g$ be the functions whose graphs are shown below. Use the graphs to evaluate the following limits. If a limit doesn't exist, explain why.


a. $\quad \lim _{x \rightarrow 0}(f(x)+g(x))$
b. $\lim _{x \rightarrow 2}(f(x)+g(x))$
c. $\quad \lim _{x \rightarrow 1}(f(x) g(x))$
d. $\lim _{x \rightarrow 2}(f(x) g(x))$
e. $\lim _{x \rightarrow-2} \frac{f(x)}{g(x)}$
f. $\lim _{x \rightarrow 0} \frac{g(x)}{f(x)}$
3. Let $f(x)=\left\{\begin{array}{cc}a x+1 & \text { if } x<2 \\ x^{2} & \text { if } x \geq 2\end{array}\right.$. Find the value of $a$ for which $\lim _{x \rightarrow 2} f(x)$ exists.
4. Use the graph of $f$ to determine whether $\lim _{h \rightarrow 0} \frac{f(\mathrm{~h})-2}{h}$ exists. If it does, compute it. If it doesn't, explain how you know.

Feel free to use either an analytic or a geometric argument to explain your answer. (Hint for geometry: note that $f(0)=2$ and $f(h)=f(0+h)$; now think geometrically about what the limit represents.)


Limits and the derivative: In this section you will need to think about what you learned about the limit definition of the derivative:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{y \rightarrow x} \frac{f(y)-f(x)}{y-x}
$$

And then pull that information together with our careful discussion of limits to answer the remaining questions.
5. Use the graph of $g$ to determine whether the limits exist. If a limit exists, compute it. If it doesn't, explain how you know.

a. $\lim _{h \rightarrow 0} \frac{g(-2+h)-\frac{3}{2}}{h}$
b. $\lim _{h \rightarrow 0} \frac{g(2+h)}{h}$
6. Graph the function $f(x)=|x|$ on the interval $[-1,1]$. Think carefully as you answer the following questions. (Hint: make of use the graph in setting up the difference quotients in the first two parts of the problem. It will simplify the problem!)
a. First set up, then evaluate $\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}$.
b. First set up, then evaluate $\lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h}$.
c. Use this information to show that the function $f$ is not differentiable at $x=0$.
d. Think about zooming in on the graph near zero. What do you see? Is the function locally linear at $x=0$ ?

Note: You should see a connection between parts c. and d. of this problem. Do you? If not, you should ask about this!
7. Recall the function that you considered in problem 3: $f(x)=\left\{\begin{array}{cc}a x+1 & \text { if } x<2 \\ x^{2} & \text { if } x \geq 2\end{array}\right.$. In that problem you found a value of $a$ for which $\lim _{x \rightarrow 2} f(x)$ exists. If $a$ has this value, does $f^{\prime}(2)$ exist? Use limit definition of the derivative to justify your answer.

